Abstract
During acid mine drainage (AMD) treatment by alkaline reagent neutralisation, Ni and Zn are partially removed via sorption to Fe and Al hydroxide precipitates. This research evaluated the effect of surface area of precipitates, formed by neutralisation of AMD using three alkalinity reagents (NaOH, Ca(OH)2, and CaCO3), on the sorption of Ni and Zn. The BET surface area of the precipitates formed by neutralisation of AMD with NaOH (173.7 m2 g−1) and Ca(OH)2 (168.2 m2 g−1) was an order of magnitude greater than that produced by CaCO3 neutralisation (16.7 m2 g−1). At pH 6.5, the residual Ni concentration was 0.32 and 0.41 mg L−1 for NaOH and Ca(OH)2 neutralised AMD, respectively, resulting in up to 60% lower Ni concentrations than achieved by CaCO3 neutralisation which had no effect on Ni removal. The residual Zn concentration was even more dependent on precipitate surface area for NaOH and Ca(OH)2 neutralised AMD (0.33 and 1.02 mg L−1), which was up to 85% lower than the CaCO3 neutralised AMD (2.20 mg L−1). These results suggest that the surface area of precipitated flocs and the selection of neutralising reagent critically affect the sorption of Ni and Zn during AMD neutralisation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.