Abstract

Ni aluminide diffusion coatings on the surface of γ-TiAl alloy were produced by electroplating a Ni layer followed by a single step high activity aluminising carried out in Ar+H2 atmosphere with a mixture of Al, NH4Cl and Al2O3 powders at 1000°C for 5 h. The effect of initial thickness for Ni layer on microstructure of produced Ni aluminide coating was highlighted. The thickness of initial Ni layer was changed to 4–20 μm. In the case of the Ni layer with thickness of 4 μm, only a little amount of NiAl phase was formed in a TiAl3 matrix. However, the microstructure of coating, in the case of the Ni layer with thickness of 8 μm, consisted of an outer layer of two phases (NiAl+TiAl3), an intermediate layer of TiAl3 and an interdiffusion layer. For thicker initial Ni layers (16 and 20 μm), beside the latter coating microstructure, a continuous surface layer of NiAl phase was observed. Isothermal oxidation tests on these aluminide coatings reveal that the oxidation resistance of the aluminide coatings increases with increase in initial thickness of Ni layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.