Abstract

BackgroundGiven their adaptation to nutrient-poor and drought environments, cycads are vital models for plant-microbiome interaction research because they are likely to host an important reservoir of beneficial microbes that may support cycad survival. However, a comprehensive understanding of the diversity and community composition of microbiome associated with different plant compartments as well as bulk soils of cycad species remains elusive.MethodAn extensive investigation of species diversity and community composition of bacterial and fungal microbiome in roots, seeds, unfertilized seeds, ovules, pollens, and soils of Cycas panzhihuaensis L. Zhou & S. Y. Yang has been conducted by high-through sequencing technology. Moreover, principal component analysis (PCA), hierarchical cluster analysis (HCA), and heatmap analysis were applied to test the niche-specific effect and biogeography factor among different sample types of this cycad species.ResultsHighly diverse microbiota and significant variation of community structure were found among different compartments of C. panzhihuaensis. Soils exhibited a remarkable differentiation of bacterial community composition compared to the other five plant organs as revealed by PCA, HCA, and heatmap analyses. Different compartments possessed unique core microbial taxa with Pseudomonadaceae and Nectriaceae shared among them. According to the indicator species analysis, there was almost no differentiation of dominant microbiomes with regard to the geography of the host cycad. Two main transmission models existed in the C. panzhihuaensis.ConclusionsEach sample type represented a unique niche and hosted a niche-specific core microbial taxa. Contrary to previous surveys, biogeography hardly exerted impact on microbial community variation in this study. The majority of the cycad-associated microbes were horizontally derived from soils and/or air environments with the rest vertically inherited from maternal plants via seeds. This study offers a robust knowledge of plant-microbiome interaction across various plant compartments and soils and lends guidelines to the investigation of adaptation mechanism of cycads in arid and nutrient-poor environments as well as their evolutionary conservation.

Highlights

  • Given their adaptation to nutrient-poor and drought environments, cycads are vital models for plantmicrobiome interaction research because they are likely to host an important reservoir of beneficial microbes that may support cycad survival

  • This study offers a robust knowledge of plantmicrobiome interaction across various plant compartments and soils and lends guidelines to the investigation of adaptation mechanism of cycads in arid and nutrient-poor environments as well as their evolutionary conservation

  • Quality metrics of high-through sequencing analysis A total of 3,800,658 raw reads, 1,816,516 from 16S rRNA, and 1,984,142 from ITS were identified among 32 samples of C. panzhihuaensis prior to quality control (QC) and assignation (Table 1)

Read more

Summary

Introduction

Given their adaptation to nutrient-poor and drought environments, cycads are vital models for plantmicrobiome interaction research because they are likely to host an important reservoir of beneficial microbes that may support cycad survival. Being the host’s second and extended genome, plant microbiome hosts taxonomically diverse microbes, including bacteria, fungi, protists, and viruses. Three categories have been classified according to the interaction between host plants and microbiota: negative (pathogenic) interaction, positive interaction, and neutral interaction [1, 2]. Among those interactions, symbiosis has been considered as synergistic interaction benefiting both partners. The microbes provide various essential nutrients (i.e., nitrogen and phosphorous) to the host species, which promotes plant growth and increases environmental tolerance and phytopathogenic resistance. The plant partners offer stable niches and photosynthetic productions to the microbiota

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.