Abstract

Niche construction is the process whereby organisms, through their activities and choices, modify their own and each other’s niches. Examples of niche construction include the building of nests, burrows, and mounds and alternation of physical and chemical conditions by animals, and the creation of shade, influencing of wind speed, and alternation of nutrient cycling by plants. Here the “niche” is construed as the set of natural selection pressures to which the population is exposed (discussed in Ecology). By transforming natural selection pressures, niche construction generates feedback in evolution, on a scale hitherto underestimated and in a manner that alters the evolutionary dynamic. Niche construction also plays a critical role in ecology, in which it supports ecosystem engineering and eco-evolutionary feedbacks and, in part, regulates the flow of energy and nutrients through ecosystems. Niche construction theory is the body of formal (e.g., population genetic, population ecology) mathematical theory that explores niche construction’s evolutionary and ecological ramifications. Many organisms construct developmental environments for their offspring or modify environmental states for other descendants, a process known as “ecological inheritance.” In recent years, this ecological inheritance has been widely recognized as a core component of extra-genetic inheritance, and it is central to attempts within evolutionary biology to broaden the concept of heredity beyond transmission genetics. The development of many organisms—and the recurrence of traits across generations—has been found to depend critically on the construction of developmental environments by ancestors. Historically, the study of niche construction has been contentious because theoretical and empirical findings from niche construction theory appear to challenge some orthodox accounts of evolution. Many researchers studying niche construction embrace an alternative perspective in which niche construction is regarded as a fundamental evolutionary process in its own right, as well as a major source of adaptation. This perspective is aligned intellectually with other progressive movements within evolutionary biology that are calling for an extended evolutionary synthesis. In addition to ecology and evolution, niche construction theory has had an impact on a variety of disciplines, including archaeology, biological anthropology, conservation biology, developmental biology, earth sciences, and philosophy of biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call