Abstract

Climate change is expected to increase the frequency and intensity of extreme events in northern ecosystems. The outcome of these events across the landscape, might be mediated by species effects, such as niche construction, with likely consequences on vegetation resilience. To test this hypothesis, we simulated an extreme event by removing aboveground vegetation in tundra heathlands dominated by the allelopathic dwarf shrub Empetrum nigrum, a strong niche constructor. We tested the hypothesis under different climate regimes along a 200-km long gradient from oceanic to continental climate in Northern Norway. We studied the vegetation recovery process over ten years along the climatic gradient. The recovery of E. nigrum and subordinate species was low and flattened out after five years at all locations along the climatic gradient, causing low vegetation cover at the end of the study in extreme event plots. Natural seed recruitment was low at all sites, however, the addition of seeds from faster growing species did not promote vegetation recovery. A soil bioassay from 8 years after the vegetation was removed, suggested the allelopathic effect of E. nigrum was still present in the soil environment. Our results provide evidence of how a common niche constructor species can dramatically affect ecosystem recovery along a climatic gradient after extreme events in habitats where it is dominant. By its extremely slow regrowth and it preventing establishment of faster growing species, this study increases our knowledge on the possible outcomes when extreme events harm niche constructors in the tundra.

Highlights

  • Extreme events are short-term changes in the climate or environment that can have long-term effects

  • When comparing mean shoot length of all species in extreme event and control soil alone, we found no effect of extreme event or continentality index except for a small effect on S. virgaurea (Fig 5b, S2 Table)

  • Ten years after simulating the extreme event, the vegetation biomass and the species richness had not reached pre-disturbance levels and no new species had established in the disturbed plots

Read more

Summary

Introduction

Extreme events are short-term changes in the climate or environment that can have long-term effects. Extreme events can be caused by for example climate change, such as winter warming episodes [1, 2], or increased herbivore disturbance [3] and human activity. Niche construction effects on tundra after extreme event. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.