Abstract

High-elevation species are predicted to have larger elevational ranges compared with species of lower elevations. The reasoning is that temperature variability is greater at higher elevation, selecting for wider niche breadth and more plastic genotypes. We used macroevolutionary comparisons involving 90 Brassicaceae species of the central Alps to test for associations among median elevation of occurrence, elevational range size and thermal variability over space and time on the one hand, and their associations with performance breadth or trait plasticity on the other hand. Performance breadth and trait plasticity were estimated by raising replicate plants per species under three temperature treatments (mild, recurrent frost, recurrent heat). Against prediction, we found that mid-elevation species had the largest elevational ranges, and their ranges were associated with increased spatial thermal variability. Nevertheless, variability in the thermal regime was positively associated neither with niche breadth nor with plasticity. Evidence for adaptive constraints was limited to a trade-off between acclimation-based increases in frost and heat resistance, and phylogenetic niche conservatism for median elevation of occurrence and temporal thermal variability. Results suggest that large elevational range size is associated with divergent adaptation within species, but not with more niche breadth or trait plasticity. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call