Abstract

The ecological niche concept has provided insights into various areas in ecology and biogeography. Although there remains much controversy regarding whether species niches are conserved across space and time, many recent studies have suggested that invasive species conserve their climatic niche between native and introduced ranges; however, whether the climatic niche of cultivated invasive species, whose niches are strongly affected by human activities, are conserved between native and introduced ranges remains unclear. Additionally, the range dynamics of invasive species in their native and introduced regions have not been extensively studied. Here, we investigated the niche and range dynamics of Tasmanian blue gum (Eucalyptus globulus Labill.), a globally cultivated invasive tree, using ecological niche models and niche dynamic analyses. The most important factors affecting the niche changes between native and introduced Tasmanian blue gum were max temperature of the warmest month and precipitation of the wettest month. The climate niche was not conserved between introduced and native range Tasmanian blue gum; moreover, the niche area of the former was ca. 7.4 times larger than that of the latter, as introduced Tasmanian blue gum could survive in hotter, colder, wetter, and drier climates. In addition, the potential range of introduced Tasmanian blue gum was ca. 32 times larger than that of its native counterpart. Human introduction and cultivation may play a key role in the niche and range expansion of introduced Tasmanian blue gum. Given that small increases in niche area can result in large range expansions, the niche expansion of an invasive species could be used to evaluate invasion risk, which might even be more sensitive than range expansions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call