Abstract
Abstract We report the detection of 376.05 Hz (2.66 ms) coherent X-ray pulsations in NICER observations of a transient outburst of the low-mass X-ray binary IGR J17494−3030 in 2020 October/November. The system is an accreting millisecond X-ray pulsar in a 75-minute ultracompact binary. The mass donor is most likely a ≃0.02 M ⊙ finite-entropy white dwarf composed of He or C/O. The fractional rms pulsed amplitude is 7.4%, and the soft (1–3 keV) X-ray pulse profile contains a significant second harmonic. The pulsed amplitude and pulse phase lag (relative to our mean timing model) are energy dependent, each having a local maximum at 4 and 1.5 keV, respectively. We also recovered the X-ray pulsations in archival 2012 XMM-Newton observations, allowing us to measure a long-term pulsar spin-down rate of Hz s−1 and to infer a pulsar surface dipole magnetic field strength of ≃109 G. We show that the mass transfer in the binary is likely nonconservative, and we discuss various scenarios for mass loss from the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.