Abstract

The paper presents a simple but efficient new numerical scheme for the integration of nonlinear constitutive equations. Although it can be used for the integration of a system of algebraic and differential equations in general, the scheme is primarily developed for use with the direct solution methods for solving boundary value problems, e.g. explicit dynamic analysis in ABAQUS/Explicit. In the developed explicit scheme, where no iteration is required, the implementation simplicity of the forward-Euler scheme and the accuracy of the backward-Euler scheme are successfully combined. The properties of the proposed NICE scheme, which was also implemented into ABAQUS/Explicit via User Material Subroutine (VUMAT) interface platform, are compared with the properties of the classical forward-Euler scheme and backward-Euler scheme. For this purpose two highly nonlinear examples, with the von Mises and GTN material model considered, have been studied. The accuracy of the new scheme is demonstrated to be at least of the same level as experienced by the backward-Euler scheme, if we compare them on the condition of the same CPU time consumption. Besides, the simplicity of the NICE scheme, which is due to implementation similarity with the classical forward-Euler scheme, is its great Advantage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.