Abstract

A bounded linear operator is said to be nice if its adjoint preserves extreme points of the dual unit ball. Motivated by a description due to Labuschagne and Mascioni [9] of such maps for the space of compact operators on a Hilbert space, in this article we consider a description of nice surjections onK(X, Y) for Banach spacesX, Y. We give necessary and sufficient conditions when nice surjections are given by composition operators. Our results imply automatic continuity of these maps with respect to other topologies on spaces of operators. We also formulate the corresponding result forL(X, Y) thereby proving an analogue of the result from [9] forL p (1 <p ≠ 2 < ∞) spaces. We also formulate results when nice operators are not of the canonical form, extending and correcting the results from [8].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.