Abstract
The present study was designed to determine if male physiology and male reproductive behavior predict reproductive success in Long–Evans rats. Mating behavior was observed in sexually naïve, naturally cycling female rats during behavioral estrous that were given the opportunity to mate with two males simultaneously. DNA analysis of offspring born following these mating encounters was used to identify the paternity of each pup. In order to assess the effect of mate choice during these mating encounters on reproductive success, one male rat in each pair was categorized as the preferred mate if the female spent more time (>50%) with him during the mating test of the present study. Furthermore, each male in the pairs was categorized as “attractive” or “non-attractive” by computing the number of females that preferred each male across many mating tests. Similar to results reported in Lovell et al. (2007), during 76% of these mating tests the same male rat in each pair was preferred by different female rats. Overall attractiveness of individual male rats predicted reproductive success in the present study. Interestingly, “attractive” males sired significantly FEWER pups than “non-attractive” males. Neither behavioral (e.g., latency to first sexual stimulation, number of sexual stimulations) nor physiological measures (e.g., body weight, urinary testosterone levels) of male rats predicted their reproductive success. In conclusion, the present results indicate that certain features of some males are more attractive to females, but attractive males are at a reproductive disadvantage (as measured by the number of pups sired). Although basal urinary testosterone levels did not differ between males that sired the majority of pups in a litter and males that sired few or none of the pups in a litter, aggression and/or other physiological measures of fertility (e.g., penile reflexes) may differ between males that are attractive to females and those that have a reproductive advantage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.