Abstract

Identifying meaningful cancer driver genes in a cohort of tumors is a challenging task in cancer genomics. Although existing studies have identified known cancer drivers, most of them focus on detecting coding drivers with mutations. It is acknowledged that non-coding drivers can regulate driver mutations to promote cancer growth. In this work, we propose a novel node importance-based network analysis (NIBNA) framework to detect coding and non-coding cancer drivers. We hypothesize that cancer drivers are crucial to the formation of community structures in cancer network, and removing them from the network greatly perturbs the network structure thereby critically affecting the functioning of the network. NIBNA detects cancer drivers using a three-step process: first, a condition-specific network is built by incorporating gene expression data and gene networks; second, the community structures in the network are estimated; and third, a centrality-based metric is applied to compute node importance. We apply NIBNA to the BRCA dataset, and it outperforms existing state-of-art methods in detecting coding cancer drivers. NIBNA also predicts 265 miRNA drivers, and majority of these drivers have been validated in literature. Further we apply NIBNA to detect cancer subtype-specific drivers, and several predicted drivers have been validated to be associated with cancer subtypes. Lastly, we evaluate NIBNA's performance in detecting epithelial-mesenchymal transition drivers, and we confirmed 8 coding and 13 miRNA drivers in the list of known genes. The source code can be accessed at https://github.com/mandarsc/NIBNA. Supplementary data are available at Bioinformatics online.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call