Abstract

Catalytic hydrotreatment is an attractive technology to convert fast pyrolysis oil to stabilized oil products for co-processing in conventional crude oil refinery units. We report here the use of novel bimetallic NiCu- and NiPd-based (Picula) catalysts characterized by a high Ni content (29–58 wt %) and prepared using a sol–gel method with SiO2, La2O3, kaolin, ZrO2, and combinations thereof as the support, for the catalytic hydrotreatment of fast pyrolysis oil. The experiments were performed in a batch autoclave (1 h at 150 °C, 3 h at 350 °C, and 200 bar initial pressure at 350 °C). The catalyst with the highest nickel loading (58 wt % Ni) promoted with Pd (0.7 wt %) was the most active, yielding oil products with improved properties compared to the crude pyrolysis oil (lower oxygen content, higher solubility in hydrocarbons, and less tendency for coke formation). For all Picula catalysts, except the ZrO2-based catalysts, methane formation was considerably lower than for Ru/C, the benchmark catalyst in ca...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.