Abstract
Transitional metal phosphides with high electrical conductivity and superb physicochemical features have been recognized as ideal battery-type electrode materials for outstanding performance supercapacitors. However, their specific capacities and structural stability are needed to be enhanced for large-scale practical applications. To overcome these shortcomings, we fabricated heterostructured NiAlP@cobalt substituted nickel carbonate hydroxide (Co-NiCH) nanosheet arrays by sequential a hydrothermal reaction, a phosphorization treatment, and a second hydrothermal reaction. Profiting from its core–shell porous nanostructure and synergistic effect of NiAlP with high electrical conductivity and Co-NiCH with high redox reactivity, the resultant NiAlP@Co-NiCH electrode delivers a large specific capacity of 825.7C g−1 at 1 A g−1, excellent rate capability with 78.9% capacity retention and long lifespan, superior to those of pure NiAlP and Co-NiCH electrodes. Additionally, an aqueous asymmetric supercapacitor device is constructed by NiAlP@Co-NiCH and lotus pollen-derived hierarchical porous carbon, which demonstrates a large energy density of 82.3 Wh kg−1 at a power density of 739.8 W kg−1, and wonderful cycle stability with 88.2% capacity retention after 10,000 cycles. This work proposes a feasible strategy on construction of transitional metal phosphide-based heterojunctions for advanced asymmetric supercapacitor devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.