Abstract

ObjectiveKidney ischemia and reperfusion (I/R) injury–associated acute and chronic kidney injury often leads to cardiac dysfunction, which may involve depletion of intracellular NAD+ (the oxidized form of the nicotinamide adenine dinucleotide coenzyme) and reduction in intracellular adenosine triphosphate (ATP) levels, resulting in mitochondrial dysfunction. We examined whether treatment with niacin, an antioxidant and a component of NAD+, protects cardiac function and improves myocardial mitochondrial metabolism during kidney I/R injury. MethodsStudies were performed in Sprague-Dawley male rats divided into sham-operated, kidney I/R, and niacin-treated kidney I/R groups. Niacin was administered 3 days before the ischemia through 7 days of reperfusion. Kidney ischemia was conducted by bilateral occlusion of renal pedicles for 45 minutes, followed by releasing the clamps and closing the abdominal incision. After 7 days of reperfusion, we measured the cardiac function using a simultaneous pressure-volume catheter, cardiac biomarker (troponin T; cTnT), and kidney injury marker (creatinine and blood urea nitrogen). Myocardial malondialdehyde level and peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α mRNA expression also were measured. ResultsKidney I/R injury impairs cardiac function, induces myocardial and kidney injury, and markedly increases myocardial PGC-1α mRNA expression, suggesting utilizing more free fatty acid for ATP production. Niacin treatment improved cardiac function, reduced oxidative stress, and sustained PGC-1α expression (P < .05). ConclusionsKidney I/R-associated cardiac dysfunction is likely associated with increases in myocardial lipid peroxidation and utilizing more free fatty acid for ATP production. Niacin improves mitochondrial metabolism and reduced myocardial oxidative stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.