Abstract

As a member of transition metal sulfides, Ni3S2 has been reported as one type of the effective pseudocapacitive electrode materials for supercapacitors, due to its good electrical conductivity and high electrochemical activity. To further improve the energy density of the Ni3S2-based supercapacitors, we propose a novel approach to the Ni3S2/Ni2O3 heterojunction anchored on N-doped carbon nanosheet aerogels (Ni3S2/Ni2O3@N-CNA), which is used as the cathode for Zn-ion hybrid supercapacitors with the dual-ion electrolytes. The Ni3S2/Ni2O3@N-CNA samples can be prepared through the bubble-templated polymerization of pyrrole and the carbonization of the polypyrrole nanosheet hydrogel/Ni2+. The Ni3S2/Ni2O3@N-CNA cathode is immersed into the Li-ion catholyte for Li+ storage, while the Zn foil anode is immersed into the Zn-ion anolyte for Zn2+ storage. Electrochemical kinetic analysis of the dual-ion hybrid supercapacitor indicates its evident capacitance characteristic. Additionally, theoretical calculations reveal that the Ni3S2/Ni2O3 heterojunction can facilitate the adsorption and dehydration of a hydrated Li+ ion to further play a great role in the enhancement of pseudocapacitance. Based on the novel strategy of the alkaline dual-ion electrolytes, this dual-ion hybrid supercapacitor with the high energy density (64.2 Wh kg−1) opens up a new avenue to develop high-performance Zn-ion hybrid supercapacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.