Abstract

The designing and preparing of low-cost and easily available electrocatalyst for oxygen evolution reaction (OER) are crucial for many advanced energy technologies. Herein, the Ni3S2 nanostrips@FeNi-NiFe2O4 nanoparticles embedded in N-doped carbon (Ni3S2@FeNi-NiFe2O4/C) microspheres were synthesized as improved electrocatalyst for OER, using a facile heat-treatment method. The optimized Ni3S2@FeNi-NiFe2O4/C-3 sample exhibits enhanced electrocatalytic activity toward OER performance with an overpotential of 280 mV at 10 mA cm−2 and a small Tafel slope of 33.9 mV dec−1. Furthermore, Ni3S2@FeNi-NiFe2O4/C-3 composite shows good stability in alkaline media. The outstanding electrocatalytic OER performance of composites was attributed due to the synergetic effect between Ni3S2 nanostrips and FeNi-NiFe2O4 nanoparticles and it is believed that the heterointerfaces between them act as active centers for OER. Additionally, N-doped carbon prevents the aggregation of Ni3S2@FeNi-NiFe2O4 species and enhances the conductivity of composites during the OER process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call