Abstract

Exploring bifunctional electrocatalysts with high-efficiency and stability toward overall water splitting is desirable for sustainable energy technologies, yet challenging. Herein, we report the construction of Ni3N on the surface of Ni-MOF-74 through an in-situ nitriding process. The obtained Ni-MOF-74/Ni3N exhibits remarkable HER activity with an overpotential of 73 mV to deliver 10 mA cm−2. Theoretical calculations and experimental study demonstrate the electron transport between Ni3N and Ni-MOF-74, leading to the improved H2O adsorption, optimized hydrogen adsorption, and increased Had diffusion, which contributes to the enhanced HER performance. Besides, the obtained Ni-MOF-74/Ni3N also possesses outstanding activity toward OER and overall water splitting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.