Abstract

Ni2P2O7-based composites grown on conductive substrate can efficiently promote the electrical transport during the electrochemical reactions in supercapacitors. However, Ni2P2O7 nanoarrays are easily peeled off from the substrate upon repeated electrochemical reaction. Herein, Ni2P2O7 nanoarrays grown on Ni foam with surficially decorated C3N4 thin nanosheets are achieved by a hydrothermal and in situ calcination strategy. The decorated C3N4 nanosheet network on the surface fully covers both Ni2P2O7 and Ni foam and efficiently prevents Ni2P2O7 nanoarrays from peeling off during the charge and discharge cycles. The optimized composites exhibit high pseudocapacitance and greatly enhanced cycling stability. The assembled asymmetric supercapacitor shows favorable specific capacitance and stability as energy storage devices. Such a strategy for fabricating C3N4-modified Ni2P2O7 nanoarrays is feasible and efficient, and can be therefore extended for constructing other electrodes with high capacitance and excell...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.