Abstract

Lignin is exceptionally abundant in nature and is regarded as a renewable, cheap, and environmentally friendly resource for the manufacture of aromatic chemicals. A novel Ni12P5/P–N–C catalyst for catalytic hydrogenolysis of lignin was synthesized. The catalysts were prepared by simple impregnation and carbonization using the nonprecious metal Ni taken up by the cell wall of Chlorella in Ni(NO3)2 solution. There were only two steps in this process, making the whole process very simple, efficient, and economical. Ni12P5 was uniformly distributed in the catalyst. During the hydrogenolysis of lignin, after 4 h reaction at 270 °C, the yield of bio-oil reached 65.26%, the yield of monomer reached 9.60%, and the selectivity to alkylphenol reached 76.15%. The mixed solvent of ethanol/isopropanol (1:1, v/v) is used as the solvent for the hydrogenolysis of lignin, which not only had excellent hydrogen transferability but also improved the yield of bio-oil, inhibiting the generation of char. No external hydrogen was used, thus avoiding safety issues in hydrogen transport and storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.