Abstract

Controlling the selectivity of CO2 hydrogenation by catalysis is a fundamental challenge. This study examines the interrelation between active sites and reaction pathways in Ni-catalyzed CO2 hydrogenation. The alloying of Ni with Zn to charged (Niσ––Znσ+) active sites modifies the electronic structure and d-band center, weakens the interaction with CO/H2, and preferentially catalyzes the reverse water gas shift to CO with the thermodynamically favored methanation pathway switched off. The charged dual sites can stabilize the activated CO2 species in a η2(C, O) bridge configuration, directly dissociate the C═O bond to *CO, and promote CO desorption. The mechanistic investigation has elucidated the reaction pathways in the Ni-catalyzed CO2 hydrogenation and identified the crucial intermediates that impacted the product selectivity, which can provide a theoretical guide for the Ni-based catalyst design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.