Abstract

In order to clarify the role of R2O3 in the metal-oxide catalysts derived from complex oxide precursors, a series of R1.5Ca0.5NiO4 (R = Nd, Sm, Eu) complex oxides was obtained. A significant systematic increase in the orthorhombic distortion of the R1.5Ca0.5NiO4 structure (K2NiF4 type, Cmce) from Nd to Eu correlates with a corresponding decrease in their ionic radii. A reduction of R1.5Ca0.5NiO4 in the Ar/H2 gas mixture at 800 °C causes a formation of dense agglomerates of CaO and R2O3 coated with spherical 25–30 nm particles of Ni metal. The size of metal particles and oxide agglomerates is similar in all Ni/(R2O3,CaO) composites in the study. Their morphology is rather similar to the products of redox exsolution obtained by the partial reduction of complex oxides. All obtained composites demonstrated a significant catalytic activity in the dry reforming (DRM) and partial oxidation (POM) of methane at 700–800 °C. A systematic decrease in the DRM catalytic activity of composites from Nd to Eu could be attributed to the basicity reduction of R2O3 components of the composite catalysts. The maximum CH4 conversion in POM reaction was observed for Ni/(Sm2O3,CaO), while the maximum selectivity was demonstrated by Nd2O3-based composite. The possible reasons for the observed difference are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.