Abstract

Aziridines are readily available C(sp3) precursors that afford valuable β-functionalized amines upon ring opening. In this article, we report a Ni/photoredox methodology for C(sp3)-C(sp3) cross-coupling between aziridines and methyl/1°/2° aliphatic alcohols activated as benzaldehyde dialkyl acetals. Orthogonal activation modes of each alkyl coupling partner facilitate cross-selectivity in the C(sp3)-C(sp3) bond-forming reaction: the benzaldehyde dialkyl acetal is activated via hydrogen atom abstraction and β-scission via a bromine radical (generated in situ from single-electron oxidation of bromide), whereas the aziridine is activated at the Ni center via reduction. We demonstrate that an Ni(II) azametallacycle, conventionally proposed in aziridine cross-coupling, is not an intermediate in the productive cross-coupling. Rather, stoichiometric organometallic and linear free energy relationship studies indicate that aziridine activation proceeds via Ni(I) oxidative addition, a previously unexplored elementary step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call