Abstract

Loading cocatalysts to promote spatial charge separation has been confirmed as an effective method for improving photocatalytic hydrogen production. This article reports that the synthesis of Ni(OH)2/Cd0.9Zn0.1S nanorod photocatalyst is suitable for photocatalytic H2 generation under visible light. It can be proven that the binary photocatalyst exhibits a one-dimensional nanorod morphological structure. Ni(OH)2 nanosheets occupy the top area of Cd0.9Zn0.1S nanorods. The photocatalytic H2 production rate can reach 132.93 mmol·h-1·g-1, which corresponds to an apparent quantum efficiency of up to 76.5% at a wavelength of 460 nm. In addition, the Ni(OH)2 nanosheet can aggregate the light-incited electrons of Cd0.9Zn0.1S, inhibiting the confluence of electrons and holes. The detailed analysis of its mechanism through characterization methods such as photoluminescence and electrochemical measurement shows that the significant improvement in photocatalytic performance derives from the effective spatial separation of photo-induced charge carriers. Therefore, this synthesis strategy of one-dimensional materials may bring new prospects for more efficient, stable, and sustainable photocatalysis for water splitting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.