Abstract

The development of new, clean and efficient catalytic materials for hydrogen evolution reaction (HER) has become extremely unstoppable. Herein, the heterostructural Ni-Ni3P nanoparticles embedded into N\\P co-doped carbon shells on 3D graphene frameworks (Ni-Ni3P@NPC/rGO) was synthesized viaan in situ phosphatization of nickel well-integrated with the structure engineering of carbon matrix derived from saccharomycetes. The in-situ phosphating process of nickel using P source provided by saccharomycetes is particularly simple, economical and environmentally friendly. In addition, the as-prepared Ni-Ni3P@NPC/rGO exhibits superior bifunctional electrocatalytic performance toward both HER (extremely low overpotential of 113 mV at 20 mA cm–2) and urea degradation reaction (UDR, only 1.38 V to attain 50 mA cm–2). Furthermore, a two-electrode electrolyzer employing the 3D block electrode (Ni-Ni3P@NPC/rGO/GFB) couple on both cathode and anode, can produce higher current density with lower voltage in urea-based wastewater splitting less than pure water splitting (saved 448 mV to deliver 500 mA g–1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.