Abstract

Hydrogenolysis of carbon–oxygen bonds is a versatile synthetic method, of which hydrogenolysis of bioderived 5-hydroxymethylfurfural (HMF) to furanic fuels is especially attractive. However, low-temperature hydrogenolysis (in particular over non-noble catalysts) is challenging. Herein, nickel nanoparticles (NPs) inlaid nickel phyllosilicate (NiSi-PS) are presented for efficient hydrogenolysis of HMF to yield furanic fuels at 130–150 °C, being much superior with impregnated Ni/SiO2 catalysts prepared from the same starting materials. NiSi-PS also shows a 2-fold HMF conversion intrinsic rate and 3-fold hydrogenolysis rate compared with the impregnated Ni/SiO2. The superior performance originated from the synergy of highly dispersed nickel NPs and substantially formed acid sites due to coordinatively unsaturated Ni (II) sites located at the remnant nickel phyllosilicate structure, as revealed by detailed characterizations. The model reactions over the other reference catalysts further highlighted the metal–a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.