Abstract
The one-pot chemical reduction process was used to generate the bimetallic Ni–Mo nanoparticles attached to reduced graphene oxide (rGO) nanocomposite, which was then used as an effective counter electrode in dye-sensitized solar cells (DSSC). Diffraction patterns were used to investigate the face-centered crystalline structure of the spherical-shaped Ni–Mo nanoparticles that were uniformly anchored over the surface of rGO. The nanoparticles had an average diameter ranging from 70 to 120 nm. Raman spectroscopy was utilized to investigate the structural interaction that was created by the presence of bimetallic nanoparticles and the graphene oxide support. In addition, the rGO/Ni–Mo counter electrode equipped DSSC demonstrated the highest solar to electrical energy conversion efficiency of 3.11% under irradiation from one sun with a fill factor (FF) of 0.48.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.