Abstract

Developing new advanced nonenzymatic electrochemical nano-sensors for glucose detection has attracted intensive attraction. In this work, we designed a novel nanocomposite nonenzymatic glucose sensor by fabricating hierarchically nanostructured metal nickel on titania nanowire arrays, which was loaded on a transparent conductive substrate (i.e., fluorine-doped tin oxide, FTO) surface by mild hydrothermal method. Due to the large surface area of the hierarchically nanostructured Ni and fast electron transfer of the TiO₂ nanowire arrays electrode, the nanocomposite electrode shows excellent electrochemical activity toward the oxidation of glucose. The electrode exhibits high sensitivity in detecting glucose concentration (1472 μA mM-1 cm-2) with a wide linear range from 2×10-4 M to 2×10-3 M, fast response time (within 5 s), and small detection limit (10 μM) (S/N = 3). The good analytical performance, low cost and simple preparation method make this novel electrode material promising for the development of effective glucose nonenzymatic glucose sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call