Abstract

Self-supported NiO-MOx-Al2O3 (M = Ce or Mg) nanocomposites mounted on a Ni-foam (110 PPI) as the monolithic structured catalyst have been developed for the high throughput catalytic partial oxidation of methane to syngas. The catalysts are obtainable by direct growth of NiAl layered double hydroxides nanosheets and subsequent impregnation with boehmite sol containing Al-Ce or Al-Mg nitrates. Such catalysts are highly active and selective with promising stability in the title reaction, for example, the NiO-CeO2-Al2O3/Ni-foam achieves a high methane conversion of 86.4% with 91.2%/89.0% selectivities to H2/CO and is stable for at least 100 h at 700 °C and a high gas hourly space velocity of 100 L g−1 h−1. Thanks to a feasible CeO2↔CeAlO3 chemical cycling that is able to promote the O2 activation to create an oxidative environment around Ni particles, carbon formation rate is dramatically suppressed by a factor of at least 5 compared to the base catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.