Abstract

Ni-doped Mn5Si3 alloys of nominal compositions Mn5−xNixSi3 (for x = 0.05, 0.1, and 0.2) have been investigated through detailed neutron powder diffraction (NPD) studies in zero magnetic field and ambient pressure. At room temperature, all three Ni-doped alloys crystallize with D88 type hexagonal structure having P63∕mcm space group. These alloys undergo paramagnetic → collinear antiferromagnetic → non-collinear antiferromagnetic transitions on cooling from room temperature. A significant decrease in collinear to non-collinear antiferromagnetic transition temperature has been observed with increasing Ni concentration. The magnetic structure of both antiferromagnetic phases can be described by the magnetic propagation vector k = (0,1,0). However, the moment size and the orientation in the non-collinear antiferromagnetic phase are found to be notably affected by the Ni-doping. Approaching near-parallel arrangement of Mn-moments with increasing Ni-doping is found to be responsible for the gradual disappearance of unusual magnetic properties (inverted hysteresis loop, thermomagnetic irreversibility, etc.) observed in Mn5Si3 alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.