Abstract

Transition–metal-doped carbon-based electrocatalysts have attracted attention as alternatives to noble metal electrocatalysts (e.g. IrO2 and RuO2) for oxygen evolution reaction (OER) because they are inexpensive and highly efficient. However, their poor catalytic activity and time-consuming synthesis remain a challenge. Herein, we report a facile and green technique using pulsed laser ablation for preparing Ni-doped multi-walled carbon nanotubes (Ni-MWCNTs) as OER catalysts. Ni-MWCNTs exhibit high surface area, oxygen-rich functional groups (e.g., hydroxyl and carboxyl), and successful doping of Ni in the carbon framework. The as-prepared Ni-MWCNTs exhibited excellent OER catalytic performance, with an overpotential of 320 mV at the current density of 10 mA cm−2 in an alkaline medium, which is lower than that of the commercial RuO2 catalyst. Furthermore, Ni-MWCNTs displayed the initial electrocatalytic activity after 10-h stability tests, demonstrating good electrochemical durability. We believe that this work provides a simple protocol for fabricating heteroatom-doped carbon nanotubes as high-performance OER electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.