Abstract

Abstract After heat treatment at 400 °C the effective resistivities of typical Ni-coated Cu conductor wires increased by up to 6.9% as a result of Ni–Cu interdiffusion. Direct Ni–Cu interdiffusion experiments were performed between metal foils at temperatures of 400–600 °C for times up to 192 h. Calculated activation energies were in range 80–90 kJ mol −1 , consistent with a grain boundary diffusion mechanism. Analysis of published Ni–Cu interdiffusion coefficients suggested a clear dependence on grain size and grain shape. A concentric circle model was developed to simulate changes in composition and effective resistivity in the Ni–Cu wires as a function of time. It was predicted that it would take 1.4 × 10 5 h at 400 °C for 10% increase in the effective resistivity of an AWG18-Class27 conductor wire. Good agreement between simulated and experimental data for effective resistivity was only achieved by employing effective diffusion coefficients corrected for microstructural effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.