Abstract

5-hydroxymethylfurfural oxidation reaction (HMFOR) offers a promising avenue to achieve energy-saving H2 production and produce value-added chemicals. However, the lack of HMFOR electrocatalysts with large current density and high selectivity impedes the whole productivity. Herein, an Ni3P-Cu3P heterojunction grown on Cu foam (Ni3P-Cu3P/CF) was successfully constructed, achieving large current density (300mAcm-2 at 1.60V vs. RHE) and high selectivity and Faradaic efficiency (>99%) for HMFOR. The X-ray photoelectron spectroscopy and theoretical calculations reveal that the interface charge redistributes at the Ni3P-Cu3P heterointerface, resulting into the charge-deficiency Ni3P and charge-accumulation Cu3P. The charge-deficiency Ni3P induced by charge-attracting Cu3P favors to form more high-valence Ni species, which facilitates to optimize the adsorption of HMF and OH⁎ species for improving current density and decreasing potential, while the charge-accumulation Cu3P enables to broaden the potential window by suppressing competitive oxygen evolution reaction, thus elevating the conversion rate and selectivity of products. Benefiting from the excellent performance of Ni3P-Cu3P/CF for HMFOR, when constructing a HMFOR-assisted H2 production system using Ni3P-Cu3P/CF and self-prepared MoNiNx/NF as anode and cathode, the energy consumption was substantially decreased to 3.8kW•h/Nm3 relative to that of pure water splitting (4.66kW•h/Nm3). Our work is instructive for achieving low energy consumption of H2 production and synthesis of valuable chemicals by constructing heterojunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call