Abstract

In this work, phase-pure Mg1.8(Ni1-xCox)0.2Al4Si5O18 (0 ≤ x ≤ 1) ceramics were synthesized by a high-temperature solid-state method. On the basis of Rietveld refinement data of X-ray powder diffraction and Phillips-Vechten-Levine theory, the atomic ionicity, lattice energy, and bond energy of the compound were calculated to explore their influence on the microwave dielectric properties of ceramics. The Mg1.8Ni0.1Co0.1Al4Si5O18 (x = 0.5) ceramic exhibited the best microwave dielectric properties: εr = 4.44, Qf = 73 539 GHz@13 GHz, and τf = -23.9 ppm/°C. (Ni1-xCox)2+ complex ionic doping, compared with only Ni2+ or Co2+, is beneficial for improving the symmetry of [Si4Al2O18] hexagonal rings and reducing distortion. Subsequently, 8 wt % TiO2 was added to Mg1.8Ni0.1Co0.1Al4Si5O18, resulting in a near-zero τf and high Qf values for the composite ceramic, with εr = 5.22, Qf = 58 449 GHz@13 GHz, and τf = -2.06 ppm/°C. Finally, a 5G millimeter-wave antenna with a central operating frequency of 25.52 GHz was designed and fabricated using the Mg1.8Ni0.1Co0.1Al4Si5O18-8 wt % TiO2 ceramics. Operating in the 24.7-26.0 GHz range, it demonstrated favorable radiation characteristics with a simulated efficiency of 85.2% and a gain of 4.58 dBi. The antenna's performance confirms the high potential of the cordierite composite for application in 5G communication systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.