Abstract
Dry methane reforming (DRM) presents a viable pathway for converting greenhouse gases into useful syngas. Nevertheless, the procedure requires robust and reasonably priced catalysts. This study explored using cost-effective cobalt and nickel combined into a single catalyst with different metal ratios. The reaction was conducted in a fixed reactor at 700 °C. The findings indicate that the incorporation of cobalt significantly enhances catalyst performance by preventing metal sintering, improving metal dispersion, and promoting beneficial metal-support interactions. The best-performing catalyst (3.75Ni+1.25Co-ScCeZr) achieved a good conversion rate of CH4 and CO2 at 46.8 %, and 60 % respectively after 330 minutes while maintaining good stability. The TGA and CO2-TPD analysis results show that the addition of Co to Ni reduces carbon formation, and increases the amount of strong basic sites and isolated O2- species, and the total amount of CO2 desorbed. These results collectively highlight the potential of cobalt-nickel catalysts for practical DRM applications and contribute to developing sustainable energy technologies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.