Abstract

Dry reforming of methane (DRM), to produce synthesis gas, is one of the most important chemical reactions used for the industrial production of hydrogen and leads to the synthesis of hydrocarbons (liquid fuels) and other valuable products. A cost-effective alternative to active and stable noble metal DRM catalysts, with comparable catalytic performance, can be composite materials based on nickel, cobalt and transition metal carbides. In this line, the present work proposes a non-standard way to obtain dry reforming catalysts of Ni, Co and Ni-Co-modified tungsten carbide (WC) produced by an electric arc method. Different amounts of nickel, cobalt and their mixtures were deposited on tungsten carbide by deposition-precipitation with NaOH (DP) and incipient wetness impregnation (IWI) methods. The resulting materials were characterized by N2 adsorption-desorption, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy, and their performance was evaluated in DRM. The composition and preparation method of catalysts predetermined their structural, textural and electronic properties, playing a decisive role in their activity for DRM. DP-prepared 20%Ni/WC material remained resistant to oxidation, both that of the active metal (nickel) and of the tungsten carbide, as well as to coking during DRM. This sample proved to be the most active and stable among all studied materials. Possibly, the resistance to oxidation and coking was due to a more efficient implementation of the oxidation/(re)carbonization cycle on the surface of this catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.