Abstract

In theory, electrocatalysts in their metallic forms should be the most stable chemical state under cathodic potentials. It is known that the highly dispersed nanoparticle (NP) types of electrocatalysts often possess higher activity than their bulk counterparts. However, facilely and controllably fabricating well-dispersed nonprecious metal NPs with superior electrocatalytic activity, selectivity, and durability is highly challenging. Here, we report a facile reductive pyrolysis approach to controllably synthesize NiCo alloy NPs confined on the tip of N-doped carbon nanotubes (N-CNTs) from a bimetal-MOF precursor. The electrocatalytic performance of the resultant NiCo@N-CNTs are evaluated by a wide spectrum of nitroarene reductive coupling reactions to produce azoxy-benzenes, a class of precious chemicals for textile, food, cosmetic, and pharmaceutical industries. The superior electrocatalytic stability, full conversion of nitroarenes, >99% selectivities, and >97% faradic efficiencies toward the targeted azoxy-benzene products are readily attainable by NiCo@N-CNTs, attributable to the alloying-induced synergetic effect. The presence of a CNT confinement effect in NiCo@N-CNTs induces high stability. This added to the metallic states of NiCo empowers NiCo@N-CNTs with excellent electrochemical stability under reductive reaction conditions. In an effort to enhance the energy utilization efficiency, we construct a NiCo@N-CNTs||Ni(OH)2/NF two-electrode electrolyzer to simultaneously reduce nitrobenzene at the cathode and 5-hydroxymethylfurfural with >99% yields for both azoxy-benzene and 2,5-furandicarboxylic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call