Abstract

Stable-isotope labeling strategies are extensively used for multiplex quantitative proteomics. Hybrid-isotope labeling strategies that combine the use of isotopic mass difference labeling and isobaric tags can greatly increase sample multiplexity. In this work, we present a novel hybrid-isotope labeling approach that we termed NHS-ester tandem labeling in one pot (NETLOP). We first optimized 16-plex isobaric TMTpro labeling of lysine residues followed by 2-plex or 3-plex isotopic mTRAQ labeling of peptide N-termini, both of which with commercially available NHS-ester reactive reagents. We then demonstrated the utility of the NETLOP approach by labeling HeLa cell samples and performing proof-of-principle quantitative 32-plex and 48-plex proteomic analyses, each in a single LC-MS/MS experiment. Compared to current hybrid-isotope labeling methods, our NETLOP approach requires no sample cleanup between different labeling steps to minimize sample loss, induces no retention time shifts that compromise quantification accuracy, can be adapted to other NHS-ester isotopic labeling reagents to further increase multiplexity, and is compatible with samples from any origin in a wide array of biological and clinical proteomics applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call