Abstract

DNA double-strand breaks (DSBs) are a particularly lethal form of DNA damage that must be repaired to restore genomic integrity. Canonical nonhomologous end joining (NHEJ), is a widely conserved pathway that detects and directly ligates the broken ends to repair the DSB. These events globally require the two proteins that form the Ku ring complex, Ku70 and Ku80, and the terminal ligase LIG4. While the NHEJ pathway in vertebrates is elaborated by more than a dozen factors of varying conservation and is similarly complex in other eukaryotes, the entire known NHEJ toolkit in Caenorhabditis elegans consists only of the core components CKU-70, CKU-80, and LIG-4 Here, we report the discovery of the first accessory NHEJ factor in C. elegans Our analysis of the DNA damage response in young larvae revealed that the canonical wild-type N2 strain consisted of two lines that exhibited a differential phenotypic response to ionizing radiation (IR). Following the mapping of the causative locus to a candidate on chromosome V and clustered regularly interspaced short palindromic repeats-Cas9 mutagenesis, we show that disruption of the nhj-1 sequence induces IR sensitivity in the N2 line that previously exhibited IR resistance. Using genetic and cytological analyses, we demonstrate that nhj-1 functions in the NHEJ pathway to repair DSBs. Double mutants of nhj-1 and lig-4 or cku-80 do not exhibit additive IR sensitivity, and the post-IR somatic and fertility phenotypes of nhj-1 mimic those of the other NHEJ factors. Furthermore, in com-1 mutants that permit repair of meiotic DSBs by NHEJ instead of restricting their repair to the homologous recombination pathway, loss of nhj-1 mimics the consequences of loss of lig-4 Diakinesis-stage nuclei in nhj-1; com-1 and nhj-1; lig-4 mutant germlines exhibit increased numbers of DAPI-staining bodies, consistent with increased chromosome fragmentation in the absence of NHEJ-mediated meiotic DSB repair. Finally, we show that NHJ-1 and LIG-4 localize to somatic nuclei in larvae, but are excluded from the germline progenitor cells, consistent with NHEJ being the dominant DNA repair pathway in the soma. nhj-1 shares no sequence homology with other known eukaryotic NHEJ factors and is taxonomically restricted to the Rhabditid family, underscoring the evolutionary plasticity of even highly conserved pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call