Abstract

Receptor-mediated, clathrin-dependent endocytosis (RME) is important for macromolecular transport and regulation of cell-surface protein expression. Pharmacological studies have shown that the plasma membrane transport protein Na(+)/H(+) exchanger 3 (NHE3), which shuttles between the plasma membrane and the early endosomal compartment by means of clathrin-mediated endocytosis, contributes to endosomal pH homeostasis and endocytic fusion events. Furthermore, it is known that NHE3 is phosphorylated and inhibited by cAMP-dependent kinase (protein kinase A). Here, we show, in a cellular knockout/retransfection approach, that NHE3 supports RME and confers cAMP sensitivity to RME, using megalin/cubilin-mediated albumin uptake in opossum kidney cells. RME, but not fluid-phase endocytosis, was dependent on NHE3 activity and expression. Furthermore, NHE3 deficiency or inhibition reduced the relative surface expression of megalin without altering total expression. In wild-type cells, cAMP inhibits NHE3 activity, leads to endosomal alkalinization, and reduces RME. In NHE3-deficient cells, endosomal pH is not sensitive to NHE3 inhibition, and cAMP does not affect endosomal pH or RME. NHE3 transfection into deficient cells restores RME and the effects of cAMP. Thus our data show that NHE3 is important for cAMP sensitivity of clathrin-dependent RME.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.