Abstract
Sodium-hydrogen exchangers (NHE) of the Slc9 gene family are the major regulators of intracellular pH against acidosis in mammalian cells. Of five plasma membrane NHE isoforms, mouse oocytes and preimplantation embryos express mRNAs encoding NHE1 (SLC9A1), NHE3 (SLC9A3), and NHE4 (SLC9A4), with higher mRNA levels for each in oocytes through one-cell stage embryos and lower levels after the two-cell stage. NHE2 (SLC9A2) and NHE5 (SLC9A5) are not expressed. Measurements of intracellular pH during recovery from induced acidosis indicated that recovery occurred via NHE activity at all preimplantation stages assessed (one-cell, two-cell, eight-cell and morula). Recovery from acidosis at each stage was entirely inhibited by cariporide, which is very highly selective for NHE1. In contrast, the moderately NHE3-selective inhibitor S3226 did not preferentially block recovery, nor did adding S3226 increase inhibition over cariporide alone, indicating that NHE3 did not play a role. There was no indication of NHE4 activity. Another regulator of intracellular pH against acidosis, the sodium-dependent bicarbonate/chloride exchanger (NDBCE; SLC4A8), had low or absent activity in two-cell embryos. Thus, NHE1 appears to be the only significant regulator of intracellular pH in preimplantation mouse embryos. Culturing embryos from the one-cell or two-cell stages in acidotic medium inhibited their development. Unexpectedly, inhibition of NHE1 with cariporide, NDBCE with DIDS, or both together did not affect embryo development to the blastocyst stage more substantially under conditions of chronic acidosis than at normal pH. Preimplantation mouse embryos thus appear to have limited capacity to resist chronic acidosis using intracellular pH regulatory mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.