Abstract
The NHC supersilyl silver complex [Ag(IPr)SitBu3] (IPr = NHCIPr) was prepared by treatment of Ag(IPr)Cl with Na(thf)2[SitBu3] in benzene/thf at room temperature. X‐ray quality crystals of the NHC supersilyl silver complex [Ag(IPr)SitBu3] (monoclinic, space group P21/m) were grown from heptane at room temperature. The 29Si NMR spectrum of a solution of [Ag(IPr)SitBu3] in C6D6 revealed two doublets caused by coupling to 107Ag and 109Ag nuclei. We further investigated the possibility of a conversion of triel halides EX3 by treatment with [Ag(IPr)SitBu3]. At ambient temperature the reaction of [Ag(IPr)SitBu3] with an excess of EX3 yielded tBu3SiEX2 (E = B, Al; X = Cl, Br; E = Ga; X = Cl) and IPr·EX3 (EX3 = BCl3, BBr3, AlCl3, AlBr3, GaCl3). The identity of tBu3SiEX2 and IPr·EX3 was confirmed by comparison with authentic samples.
Highlights
Over the past decades silanides [SiR3]– (R = organyl) have been widely investigated in basic academic research.[1,2,3,4,5] Both supported and unsupported silanides are potent nucleophiles and it has been shown that their donor strength correlates to their reduction behavior.[6]
We further investigated the possibility of a conversion of triel halides EX3 by treatment with [Ag(IPr)SitBu3]
TBu3SiAlBr2 was obtained in 34 % yield by treatment of [Zn(SitBu3)2] with AlBr3.[11]. The purpose of this paper is to establish a direct conversion of triel halides EX3 by supersilyl silver with forming monosupersilylated trielanes tBu3SiEX2
Summary
Supersilyl silver complex [Ag(IPr)SitBu3] (monoclinic, space group P21/m) were grown from heptane at room temperature. The 29Si NMR spectrum of a solution of [Ag(IPr)SitBu3] in C6D6 revealed two doublets caused by coupling to 107Ag and 109Ag nuclei. We further investigated the possibility of a conversion of triel halides EX3 by treatment with [Ag(IPr)SitBu3].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zeitschrift für anorganische und allgemeine Chemie
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.