Abstract

Ultrasound is a widely used technology for diagnosing developmental dysplasia of the hip (DDH) because it does not use radiation. Due to its low cost and convenience, 2-D ultrasound is still the most common examination in DDH diagnosis. In clinical usage, the complexity of both ultrasound image standardization and measurement leads to a high error rate for sonographers. The automatic segmentation results of key structures in the hip joint can be used to develop a standard plane detection method that helps sonographers decrease the error rate. However, current automatic segmentation methods still face challenges in robustness and accuracy. Thus, we propose a neonatal hip bone segmentation network (NHBS-Net) for the first time for the segmentation of seven key structures. We design three improvements, an enhanced dual attention module, a two-class feature fusion module, and a coordinate convolution output head, to help segment different structures. Compared with current state-of-the-art networks, NHBS-Net gains outstanding performance accuracy and generalizability, as shown in the experiments. Additionally, image standardization is a common need in ultrasonography. The ability of segmentation-based standard plane detection is tested on a 50-image standard dataset. The experiments show that our method can help healthcare workers decrease their error rate from 6%-10% to 2%. In addition, the segmentation performance in another ultrasound dataset (fetal heart) demonstrates the ability of our network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.