Abstract

Results are reported for a direct dynamics simulation of NH(4)(+) + CH(4) gas phase collisions. We interpret the results with protonated peptide/hydrogenated alkanethiolate self-assembled monolayer (H-SAM) surface collisions in mind. Previous theoretical studies of such systems have made use of nonreactive surfaces, and therefore, our goal is to investigate the types and likelihood of peptide/H-SAM reactions. In that vein, the NH(4)(+) + CH(4) reaction represents a simple gas phase system which includes many of the important interactions present in protonated peptide/H-SAM surfaces. Thirty-seven open pathways are seen in the 5-35 eV collision energy range. An energy dependence on the likelihood of forming CN bonds is found. This type of bonding could deposit both the peptide and its molecular fragments on the H-SAM surface. For our gas phase collision system, around 50% of the trajectories result in the formation of CN bonds. For all collision energies in which reactive scattering occurs, CN bond formation is an important reaction pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.