Abstract

This work reports on a reduced graphene oxide and poly(aniline) composite (rGO-PANI), with rGO clusters inserted between PANI chains. These clusters were formed due the plasticizing effect of N-methyl-2-pyrrolidone (NMP) solvent, which was added during the synthesis. Further, this composite was processed as thin film onto an interdigitated electrode array and used as the sensitive layer for ammonia gas, presenting sensitivity of 250% at 100 ppm, a response time of 97 s, and a lowest detection limit of 5 ppm. The PANI deprotonation process, upon exposure to NH3, rGO, also contributed by improving the sensitivity due its higher surface area and the presence of carboxylic acids. This allowed for the interaction between the hydrogen of NH3 (nucleophilic character) and the -COOH groups (electrophilic character) from the rGO surface, thereby introducing a promising sensing composite for amine-based gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.