Abstract

Mn-WO3/TiO2 catalysts were investigated for Selective Catalytic Reduction (SCR) of NO with NH3. The catalysts were synthesized by wetness impregnation method with different Mn loadings (1.5-3-12 wt%) on 8wt%WO3/TiO2. All three catalysts were compared with 8wt%WO3/TiO2 and bare MnOx oxide, used as references. The 1.5wt%Mn-8wt%WO3/TiO2 exhibited the highest performance in NO conversion and N2 selectivity. A commercial catalyst, based on titania supported vanadia and tungsta, (V2O5-WO3/TiO2), widely used for its high efficiency, was also investigated in the present work. The morphological, structural, redox and electronic properties of the catalysts and their thermal stability were studied by several techniques (N2 adsorption/desorption, X-ray diffraction, H2 temperature-programmed reduction, NH3 temperature programmed desorption, X-ray photoelectron spectroscopy).The aim of this paper is to study the effect of different Mn loadings on 8wt%WO3/TiO2 with the ambition to obtain highly active and selective catalysts in a large window of temperature. The replacement of toxic vanadium used in the classic V2O5-WO3/TiO2 catalyst with MnOx in the best performing catalyst, 1.5wt%Mn-8wt%WO3/TiO2, represents an important achievement to improve the environmental sustainability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.