Abstract

Plasma catalysis has emerged as a promising approach for driving thermodynamically unfavorable chemical reactions. Nevertheless, comprehending the mechanisms involved remains a challenge, leading to uncertainty about whether the optimal catalyst in plasma catalysis aligns with that in thermal catalysis. In this research, we explore this question by studying monometallic catalysts (Fe, Co, Ni and Mo) and bimetallic catalysts (Fe-Co, Mo-Co, Fe-Ni and Mo-Ni) in both thermal catalytic and plasma catalytic NH3 decomposition. Our findings reveal that the Fe-Co bimetallic catalyst exhibits the highest activity in thermal catalysis, the Fe-Ni bimetallic catalyst outperforms others in plasma catalysis, indicating a discrepancy between the optimal catalysts for the two catalytic modes in NH3 decomposition. Comprehensive catalyst characterization, kinetic analysis, temperature program surface reaction experiments and plasma diagnosis are employed to discuss the key factors influencing NH3 decomposition performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.