Abstract

Whole-genome alignment allows researchers to understand the genomic structure and variation among genomes. Approaches based on direct pairwise comparisons of DNA sequences require large computational capacities. As a consequence, pipelines combining tools for orthologous gene identification and synteny have been developed. In this manuscript, we present the latest functionalities implemented in NGSEP 4, to identify orthogroups and perform whole genome alignments. NGSEP implements functionalities for identification of clusters of homologus genes, synteny analysis and whole genome alignment. Our results showed that the NGSEP algorithm for orthogroups identification has competitive accuracy and efficiency in comparison to commonly used tools. The implementation also includes a visualization of the whole genome alignment based on synteny of the orthogroups that were identified, and a reconstruction of the pangenome based on frequencies of the orthogroups among the genomes. NGSEP 4 also includes a new graphical user interface based on the JavaFX technology. We expect that these new developments will be very useful for several studies in evolutionary biology and population genomics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.