Abstract

BackgroundTo determine the carrier frequency and pathogenic variants of common genetic disorders in the north Indian population by using next generation sequencing (NGS).MethodsAfter pre-test counselling, 200 unrelated individuals (including 88 couples) were screened for pathogenic variants in 88 genes by NGS technology. The variants were classified as per American College of Medical Genetics criteria. Pathogenic and likely pathogenic variants were subjected to thorough literature-based curation in addition to the regular filters. Variants of unknown significance were not reported. Individuals were counselled explaining the implications of the results, and cascade screening was advised when necessary.ResultsOf the 200 participants, 52 (26%) were found to be carrier of one or more disorders. Twelve individuals were identified to be carriers for congenital deafness, giving a carrier frequency of one in 17 for one of the four genes tested (SLC26A4, GJB2, TMPRSS3 and TMC1 in decreasing order). Nine individuals were observed to be carriers for cystic fibrosis, with a frequency of one in 22. Three individuals were detected to be carriers for Pompe disease (frequency one in 67). None of the 88 couples screened were found to be carriers for the same disorder. The pathogenic variants observed in many disorders (such as deafness, cystic fibrosis, Pompe disease, Canavan disease, primary hyperoxaluria, junctional epidermolysis bullosa, galactosemia, medium chain acyl CoA deficiency etc.) were different from those commonly observed in the West.ConclusionA higher carrier frequency for genetic deafness, cystic fibrosis and Pompe disease was unexpected, and contrary to the generally held view about their prevalence in Asian Indians. In spite of the small sample size, this study would suggest that population-based carrier screening panels for India would differ from those in the West, and need to be selected with due care. Testing should comprise the study of all the coding exons with its boundaries in the genes through NGS, as all the variants are not well characterized. Only study of entire coding regions in the genes will detect carriers with adequate efficiency, in order to reduce the burden of genetic disorders in India and other resource poor countries.

Highlights

  • To determine the carrier frequency and pathogenic variants of common genetic disorders in the north Indian population by using generation sequencing (NGS)

  • WHO estimated that globally 206,000 deaths and about 7% of all neonatal deaths are caused by birth defects [4]

  • Eighty eight percent had enrolled with their partner and none of them were consanguineously married

Read more

Summary

Introduction

To determine the carrier frequency and pathogenic variants of common genetic disorders in the north Indian population by using generation sequencing (NGS). Birth defects, defined as abnormalities of structure and function present from birth, are progressively contributing to a greater proportion of fetal, neonatal, infant and childhood mortality in developing countries. This is due to the decline in infectious and nutritional causes due to extensive use of immunizations, control of diarrheal and respiratory infections, and improvements in health care [1]. In the tertiary care hospitals birth defects contributed from 4.2 to 13.4% of perinatal mortality, making congenital malformations and genetic disorders as the third leading cause of neonatal mortality [6]. The burden of genetic disorders in India has been presented in a number of publications and their prevention through screening has been emphasized [3, 7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.