Abstract

Although non-invasive pre-implantation genetic testing for aneuploidy (NIPGT-A) is potentially appropriate to assess chromosomal ploidy of the embryo, practical application of it in a routine IVF centre have not been started in the absence of a recommendation. Our objective in this study was to provide a comprehensive workflow for a clinically applicable strategy for NIPGT-A based on next-generation sequencing (NGS) technology with the corresponding bioinformatic pipeline. In a retrospective study, we performed NGS on spent blastocyst culture media of Day 3 embryos fertilised with intracytoplasmic sperm injection (ICSI) with quality score on morphology assessment using the blank culture media as background control. Chromosomal abnormalities were identified by an optimised bioinformatics pipeline applying copy number variation (CNV) detecting algorithm. In this study, we demonstrate a comprehensive workflow covering both wet- and dry-lab procedures supporting a clinically applicable strategy for NIPGT-A that can be carried out within 48 h, which is critical for the same-cycle blastocyst transfer. The described integrated approach of non-invasive evaluation of embryonic DNA content of the culture media can potentially supplement existing pre-implantation genetic screening methods.

Highlights

  • We assigned all culture media samples belonging to the miscarriage group and their blank media droplets as controls and randomly selected 20 media samples and corresponding blank control media (G1 mediums) from those embryos that developed into healthy neonates for next-generation sequencing (NGS) analysis

  • We compared the culture media samples one-by-one with their corresponding blanks and the two groups according to pregnancy outcome

  • Even if all the short and low-quality DNA fragments originating from contamination could not be removed by the wet-lab or the dry-lab part from further analysis, the applied sample preparation and bioinformatics techniques helped to indicate whether a sample may carry any chromosomal abnormalities

Read more

Summary

Introduction

The current clinical guidelines for embryo selection related to in vitro fertilization rely on non-invasive embryo morphology assessment. In line up with the evolving advances of morphological evaluation [2,3] the arsenal of non-invasive methods developed based on the detection of molecular markers present in the spent culture media (SCM) of the embryo. Continuous development of analytical techniques like ESI-MS fingerprinting, Nano-UHPLC MS/MS, MALDI-TOF, immunoassays, microarray and NGS approaches of screening the embryo secretome, metabolome and complete cell-free nucleic acid profile from the SCM offer exceptional non-invasive way to assess embryo quality, ploidy and viability [11,12]. The use of minimal-invasive or non-invasive methods became a major factor of consideration during the genetic composition assessment of the developing embryo.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.